

SPECIFICATION FOR APPROVAL

Model: MCP0055C0-0144R0SHB

File Number: JX-YF-S-158.E

File Version: V2017-2

Supreme Power Solutions Co., Ltd.
Room 425, Tailai Business Mansion, No.88, Nongda South Rd,
Haidian District, Beijing, P.R. China
TEL: +86-0755-89486800

FAX: +86-10-61272268 Email: info@spscap.com

Web: www.spscap.com 1 / 5

Features

- Compact, fully enclosed splash proof design Over 1,000,000 duty cycles
- High power density

Applications

- Automotive
- Railway transportation
- Heavy duty machinery Energy storage system

ELECTRICAL	MCP0055C0-0144R0SHB		
Nominal Capacitance	55 F		
Capacitance Tolerance	0% / +20%		
Rated Voltage	144 V		
Surge Voltage	151.2 V		
ESR, DC	17 mΩ		
Maximum Continuous Current (△T=15°C)	120 A		
Maximum Continuous Current (△T=40℃)	200 A		
Maximum Peak Current, 1 sec.	2000 A		
Leakage Current (25℃, after 72h)	5.2 mA		
Capacitance of Individual Cells	3000 F		
Number of Cells	54		
Envoirnment			
Operating Temperature Range	-40℃ to +65℃		
Storage Temperature Range	-40℃ to +70℃		
Environment Humidity	≤90%RH		
PHYSICAL			
Weight	85 kg		
Power Terminals	M8/M10		
Recommended Torque - Terminal	20/30 Nm		
Vibration Specification	IEC 255-21-1		
Shock Specification	IEC 255-21-2		
Environmental Protection	IP54		
MONITORING / CELL VOLTAGE MANAGEMENT			
Cell Voltage Monitoring	Overvoltage Alarm		
Temperature Monitoring	NTC Thermistor		
Communication Interface	CAN		
POWER AND ENERGY			
Usable Power Density (Pd)	1,722 W/kg		
Impedance Match Power Density (Pmax)	3,587 W/kg		
Gravimetric Energy Density (Emax)	1.9 Wh/kg		
Strored Energy	158.4 Wh		

Web: www.spscap.com 2 / 5

LIFE	MCP0055C0-0144R0SHB		
High Temperature	1 FOO bours		
(at Rated Voltage & Maximum operating Temperature)	1,500 hours		
Capacitance Change	≤20%		
(% decrease from initial measured value)	≈20%		
ESR Change	≤100%		
(% increase from specified value)	< 10076		
Room Temperature	10 years		
(at Rated Voltage at 25℃)	10 years		
Capacitance Change	≤20%		
(% decrease from initial measured value)			
ESR Change	≤100%		
(% increase from specified value)			
Cycle Life	1,000,000		
(Number of cycles)	1,000,000		
Capacitance Change	≤20%		
(% decrease from initial measured value)	≥20%		
ESR Change	≤100%		
(% increase from specified value)	< 100 /0		
Shelf Life	4 years		
(25℃, uncharged)	4 years		
SAFE			
Factory High-Pot Test	2,500 V DC		
THERMAL CHARACTERISTICS			
Typical Thermal Resistance	0.06 °C/W		
ypical Thermal Capacitance 70,000 J/℃			

Notes

- 1. Surge voltage is non-repetitive. The duration must not exceed 1 second.
- 2. Maxmium peak Current is non-repetitive. The duration must not exceed 1 second.
- 3. Formula of maxmium peak Current:

$$Ipeak = \frac{1 / 2CV}{C \times ESR_{DC} + 1}$$

C is rated capacity, V is rated voltage.

4. Formula of power and energy

Usable Power Density
$$P_{_{\!\!d}} = \frac{0.\ 12V^2}{ESR_{_{\!\mathit{I\!\!C}}} \times \mathit{mass}}$$
 Impedance Match Power Density
$$P_{_{\!\!\mathit{max}}} = \frac{V^2}{4ESR_{_{\!\mathit{I\!\!C}}} \times \mathit{mass}}$$
 Gravimetric Energy Density
$$E_{_{\!\!\mathit{max}}} = \frac{1\ /\ 2CV^2}{3600 \times \mathit{mass}}$$
 Stored Energy
$$E = \frac{1\ /\ 2CV^2}{3600}$$

Web: www.spscap.com 3 / 5

Measuring Method

1) Charge and Discharge procedure

(Figure 1)

- A) Charge the capacitor using constant current I to rated voltage V₀
- B) Keep rated voltage 5 min
- C) Discharge the capacitor using constant current I to half rated voltage, record discharge time T_1 during voltage change from V_1 to V_2
- D) Rest 2-5s, record voltage change ΔV
- E) Discharge it to a very low voltage around 0.01V
- F) $V_1=85\% V_0 V_2=50\% V_0$
- 2) Capacitance

 $C=I^*T_1/(V_1-V_2)$

C: Capacitance (F)

I: Constant Discharge Current (A)

 T_1 : Discharge Time (S)

V₁-V₂: Voltage Change (V)

DC ESR=ΔV/I

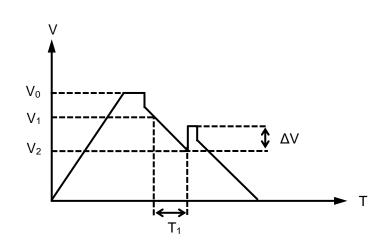


Figure 1

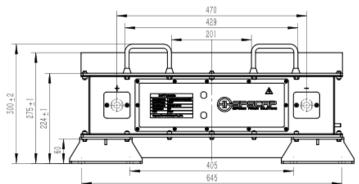
DC ESR: DC Equivalent Series Resistance (Ω)

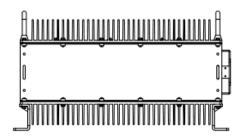
ΔV: Voltage Change (V)

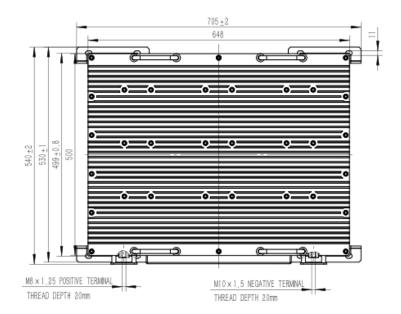
I: Constant Discharge Current (A)

4) AC ESR

Measure AC ESR using LCR meter


Frequency: 1KHz


Voltage: fully discharge


Web: www.spscap.com 4 / 5

Dimensions

Part Number	Dimension (mm)		
MCP0055C0-0144R0SHB	L (±2mm)	W (±2mm)	H (±2mm)
	705	540	300

Web: www.spscap.com 5 / 5